[

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Masterarbeit in Wirtschaftsinformatik

Implementing a Web Client for Integrated
Data, Role, Function, and Task Modelling

Tobias Schrade

D

I

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Masterarbeit in Wirtschaftsinformatik

Implementing a Web Client for Integrated Data, Role,
Function, and Task Modelling

Umsetzung eines Webclients fiir integrierte Daten-,
Rollen-, Funktions- und Aufgabenmodellierung

Author: Tobias Schrade
Supervisor: Prof. Dr. Florian Matthes

Advisor: Thomas Reschenhofer
Date: August 15, 2016

Ich versichere, dass ich diese Masterarbeit selbstandig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

Miinchen, den 15. August 2016 Tobias Schrade

Abstract

Hybrid Wikis combine the flexibility of normal wikis and the rich functionality of enter-
prise modelling systems to support collaborative information and model management. To
achieve this goal a user interface for the modelling of agile data and processes is necessary.
The users must not only be able to collaboratively define attribute and task models but
analyze the metadata. Due to the emergent nature of this data small changes happen on a
regular basis and such a tool should support users in keeping data models, task models,
and analysis models consistent.

At the current state of the art hybrid wikis do not offer any integrated user interface to
handle agile data, role, function and task modelling and analysis within one application.

In order to solve this problem, a prototype interface will be implemented into a hybrid
wiki platform following the design science approach. Through the process of evaluation
by industry partners and applying the results to the implementation, the prototype will be
improved.

This thesis will describe the prototypical implementation of a modelling user interface
for a hybrid wiki with the focus on usability for the industrial application.

vii

viii

Contents

Abstract

I. Introduction

1. Introduction
1.1. ImportantConcepts
1.1.1. HybridWiki oo
1.1.2. MxL . . e e e e
1.1.3. Adaptive Case Managementand Tasks
1.2. Problem Statement
1.3. ResearchQuestions it
1.4. Research Methodology and Outline

II. Foundations

2. Foundations
2.1. Hybrid WikiMetaModel
2.2. AccessControl MetaModel,
23. MxLMetaModel e
24. ACMMetaModel e

III. Integrated Hybrid Wiki Model

3. Integrated Hybrid Wiki Model
3.1. ExplanationoftheModel
3.2. BehaviouralModel L.

IV. Prototype Implementation

4. Prototype Implementation
4.1. Technical Foundation for the Prototype
411, SocioCortexo
41.2. sc-angular
413. mxl-angular L
41.4. AngularMaterial L o

vii

p—

U1 U U1 R R W

15

17
17
19

25

27
27
27
28
29
29

ix

Contents

4.2.
4.3.

Overall Architecture
CoreFeatures
43.1. Workspace Dashboard
4.3.2. Attribute Definitions
4.3.3. Derived Attribute Definitions
434. TasksandStages

V. Evaluation

5. Evaluation

5.1.

5.2.
5.3.

Evaluation Approach
5.1.1. EvaluationGroup.
5.1.2. Questionnaire
Results
Possible Improvements of the Prototype . . .

VI. Potential further Enhancement of the Model

6. Potential further Enhancement of the Model

6.1.

6.2.
6.3.
6.4.

6.5.
6.6.

MXxL for (default) access rights
6.11. Entity.
6.1.2. Attribute
6.13. Task
MxL for default Values
MxL for Constraints of Attribute Definitions

MxL for Tasks and Sentries
6.4.1. MXxL for Completion of a Task
6.4.2. MXxL for Enabling of a Task
UserrolesforTasks
Extended MetaModel

VII.Conclusion

7. Conclusion and Critical Reflection

7.1.
7.2.
7.3.

Summary Lo
Conclusion
Critical Reflection

VIIIOutlook + Future Work

8. Outlook and Future Work

39

41
41
42
42
43
45

49

51
51
51
51
52
52
53
53
53
53
54
54

57

59

59

59

61

63

65

Contents

Appendix 69
A. Evaluation Scenario 69
B. Evaluation Questionnaire 73

Bibliography 77

xi

Part 1.

Introduction

1. Introduction

The amount of digital information, which has to be handled by companies, is rapidly
growing. To manage it, enterprises need to adopt new applications and methods [7]. Fur-
thermore force increasingly turbulent business environments, technological innovations
and legal regulations continuous changes in enterprise information systems [1]. Another
main problem is, that the amount of support for the company, an enterprise information
system provides rapidly decreases, if the system is not able to adapt itself to the changing
environment fast enough [25].

To tackle these non-trivial problems, different solutions arose during the last years.
Matthes et al., for instance, suggested a hybrid wiki approach in 2011 [14] (c.f. Section
1.1.1). Thereby a wiki is enriched with an underlying model to provide additional struc-
ture elements for the wiki-pages like attributes and types. The main goal thereby is to
empower non-expert users to gather the information in the wiki collaboratively [14]. As
using a hybrid wiki approach for an enterprise information system can cause challenges
of different kinds, Reschenhofer et al. improved the model based on five years of testing
and evaluations [17].

Not only Reschenhofer et al. worked on the hybrid wiki approach, but also Hauder et
al. [10]. They took a more process centred approach and applied it to knowledge work in
general. The main motivation thereby was, that on the one hand that according to Daven-
port “the most important processes for organizations today involve knowledge work” [5]
and on the other hand existing work-flow management tools are not well suited to sup-
port these processes, due to a large amount of exceptions in knowledge intensive processes
[24, 22]. The introduction of tasks in their implementation called Darwin Wiki is the main
contribution of their work.

Another extension to the hybrid wiki model was the creation of a domain specific lan-
guage called model-based expression language (MxL), it is specially tailored to the under-
lying meta model. With the help of MxL quantitative KPIs can be defined and computed
[19, 15].

As shown above different concepts around the hybrid wiki meta model were created in
the past years. Although the basis of all presented works is the same model, they evolved
it into different directions resulting in various applications. This master’s thesis is about
integrating the different meta models and therefore providing one combined model. Be-
sides that, a prototypical user interface to work with the model will be implemented and
evaluated.

1. Introduction

1.1. Important Concepts

This section further explains the important concepts, which were shortly introduced above.

1.1.1. Hybrid Wiki

The hybrid wiki concept was created by Matthes et al. in 2011 [14]. It combines the loose
wiki pages and an evolving page structure behind them. This can be compared to classes
and objects in object oriented programming. Every page in the wiki then is an object of a
certain class, which is called the pages type. Besides the textual content, the page then also
has attributes, which are defined by its type. The attributes can have different constraints
on multiplicity and their type. Available types are ranging from primitive ones like text,
number, date or boolean to more complex types like references to other pages (of a certain
type) or files within the system. Thanks to this construct, the pages are structured and
there is an evolving model behind them.

Matthes et al. also suggested using hybrid wikis for enterprise architecture manage-
ment, due to the fact that its a lightweight solution which supports collaborative work in
an ever-changing environment like the architecture of an enterprise [13, 12].

The latest version of the hybrid wiki meta model is presented and explained in detail in
Section 2.1.

1.1.2. MxL

Model-based expression language is the domain specific language for the hybrid wiki
model. It is mainly developed by Thomas Reschenhofer and Ivan Monahov since 2013
[15, 16]. The main purpose of the language is to enable the definition and calculation of
key performance indicators within the hybrid wiki model. With the help of MxL expres-
sions it is possible to define additional attributes, which are always calculated during life-
time, while it is possible to refer to other elements within the system. One simple example
therefore is the calculation of the age of an person based on the date of birth.

Another important concept of MxL is type safety. Thanks to this it is possible to calculate
the type of the outcome of an expression and therefore use them as functions for other
expressions [19].

A more detailed explanation of MxL can be found in Section 2.3.

1.1.3. Adaptive Case Management and Tasks

[9] Adaptive case management (ACM) as defined by Swenson et. al in 2010 [23] is the basis
for the task concept of Hauder [9], which itself is part of the foundations for this thesis.
Coupled with hybrid wikis, tasks enable a controlled work-flow to fill out the attributes
of wiki pages. A tasks always includes a set of attributes, which need to be filled out to
complete the task. The absence of complex behaviour of tasks enables the capturing of
implicit knowledge of unskilled workers [9]. To further structure the work-flow, stages
enable hierarchical elements and preconditions define an order, in which the tasks need to
be completed.

1.2. Problem Statement

1.2. Problem Statement

All models introduced above have the hybrid wiki model as mutual basis. The fact that
they were developed by different persons simultaneously led to models, which do not
have many interconnections between them. This is a missed opportunity, because these
links could generate additional merit for the individual models. Furthermore there is no
integrated user interface, which is able to model the data for all concepts resulting in an
inhomogeneous user-experience. This problem will be addressed by this thesis.

1.3. Research Questions

The following research objective and is deducted from the problem statement:

Facilitate data, role, function and task modelling within a hybrid wiki platform
with the help of a web based user interface to provide a way to generate and
administrate the above mentioned models.

To full-fill this objective it is further divided into the two research questions:

Question 1: “"How does an integrated meta-model for data, role, function and
task models look like?”

Question 2: "How to design an integrated user interface for the management
of data, role, function and task models?”

1.4. Research Methodology and Outline

The basis of the work is Hevner et. al’s design science approach [11], but due to time
constraints there will only be one evaluation. The knowledge base for the prototype is
consisting of the mock-ups, which are already provided by Sirma Gjorgievska and the
foundations presented in Chapter 2. Combining all foundation models into one integrated
model is done in Chapter 3. Furthermore the behaviour of the important elements of the
models is elaborated and explained there. Based on this model, Chapter 4 then introduces
the implemented prototype. The important functions, which are directly connected to
the research question 2, are highlighted and explained in detail in the second part of the
chapter. To finish the first circle of Hevners approach, the implementation is evaluated in
Chapter 5. Based on the impressions of the evaluation and own theories, potential further
additions to the integrated model are brought up in Chapter 4. Concluding the thesis are
Chapters 7 and 8 containing a conclusion of my work and an outlook with future research
possibilities based on it.

1. Introduction

Part II.

Foundations

2. Foundations

In this chapter the Foundations of this work are explained. Namely these are the Hybrid
Wiki Meta Model, the MxL Meta Model and the ACM Meta Model, all introduced in Sec-
tion 1.1.

2.1. Hybrid Wiki Meta Model

The hybrid wiki meta model is based on the model presented in the Paper “Lessons
Learned in Aligning Data and Model Evolution in Collaborative Information Systems”
by Thomas Reschenhofer et. al [17]. Figure 2.1 shows their model, which will be further
explained in this chapter.

space space

’—10 Workspace ’1—‘
Entity - Entity Type
type : String name : String
1 ¢ 1
attributes « | attributeDefinitions
5 definition g e
Attribute [Essmamsma T Do AttributeDefinition
* Attribute.name 0..1
- conforms -
name : String AttributeDefinition.name name : String
multiplicity : Multiplicity
K}
1
values <<enumeration>> 0..1 | typeConstraint
Multiplicity
AttributeValue TLypeConstraint
Any number '
At least one
Exactly one
Maximal one
NumberValue ... Value NumberConstraint ...Constraint

Figure 2.1.: Hybrid Wiki Meta Model [17]

The right side of the model is responsible for the structure of the wiki whereas the left
side represents the content. Workspace is located in the middle, due to the fact that it is a
mix of content and structure and therefore cannot be assigned to one side.

A workspace can have multiple entitytypes and entities. It is the main unit to structure
the whole wiki. One workspace is one unit and it is only rarely the case that there are
references between workspaces. A workspace always has at least one entity, which is its
home page. This entity cannot be deleted.

Entities can be compared to normal pages of an wiki. They have to belong to a workspace

2. Foundations

and they can be of a certain entitytype. The entitytype with its attributedfinitions prede-
fines the structure of an entity.

Attributedefinitions define the type(constraints) of an attribute, the multiplicity and its
name. There are many options for the attribute typeconstraint. It can be a simple type
like “number” or “text” but also a reference to entitytypes, users or files is possible. This
enhances the possibilities to structure the wiki and model complex systems like an enter-
prise architectures the university life. Latter will be used for the evaluation in Chapter 5.
To make the system more flexible, attributes do not have to meet the requirements given
by the corresponding definition. Furthermore there is also the option to attributes with-
out a set attributedefinition to an entity. The multiplicity is restricted by the enumeration
multiplicity. Therefore only the multiplicities ”Any number” (*), ”At least one” (1..*), "Ex-
actly one” (1) and "Maximal one” (0..1) are possible multiplicities. This helps to lower the
complexity and is beneficial for the understanding of the resulting models.

2.2. Access Control Meta Model

The access control meta model as presented by Thomas Reschenhofer [18] is shon in figure
22.

AccessControlled

DataType Function

Qv name : Strin;
name : String i

AccessControlled é
1
O ity AccessControlled
Entity is defined by > ‘ - —) — ccessControl
o N ‘ EntityType BasicType || CompositeType . i
name : String 1 FunctionParameter
type : String » ? i *
. name : String
. -] type : DataType
K is defined by > K .
Attribute 1| AttributeDefinition DerivedAttributeDefinition
name : String name : String e
value : Object attributeType : DataType name : String

Figure 2.2.: Access Control Meta Model [18]

The interface ”AccessControlled” with Users and Groups are added to the model (see
Figure 2.3. A class implementing the ”AccessControlled” interface like entity can have
explicit access rights set for every user or group. These rights have 3 permission levels.
The lowest access level is read only, where the user can see the element, but can not edit it,
followed by editor where he or she can also edit the resource. At the top administration is
the highest level of access, which can be granted to a principal.

The organization of users can be done with groups and the use of the abstract superclass
“Principal” once more utilizing a variant of the composite pattern. Worth mentioning is,
that a principal can be in various groups which results in the possibility for an user to
be part of many groups on the one hand and a group to be a sub group of various super
groups on the other.

10

2.3. MxL Meta Model

is allowed to read »

T *
-1 Principal is allowed to edit >
name : String is allowed to administrate »

i) «interface»
sToup User AccessControlled

Figure 2.3.: Access Control Model [18]

2.3. MxL Meta Model

The MxL meta model is also based on the paper "Empowering End-users to Collabora-
tively Manage and Analyze Evolving Data Models” by Thomas Reschenhofer [18]. The
model is shown in Figure 2.4.

MxLDefinable

DataType Function

MxLReferable

MxLReferable ST name : String 0O
1
* ? ’—‘ 1} -

Entity is defined by > [. ;g ’ o
Yo | EntityType BasicType || CompositeType . i
name : String 1 FunctionParameter
type : String 1? " -
) name : String
3 A | type : DataType
2 is defined by » R o MxLDefinable
Attribute 1] AttributeDefinition DerivedAttributeDefinition
name : String MxLReferable | name: String e MxLReferable
value : Object O attributeType : DataType name : String O

Figure 2.4.: MxL Meta Model [18]

The classes filled with grey are based on the model presented in Section 3. There are four
important additions visible in the model, which will be explained in the following parts.

7”7

The classes "DataType”, “BasicType” and “CompositeType” are added and implement
the composite pattern to enable hierarchical structures within the different types. They are
not of high importance for this thesis and therefore not further explained.

The second change is class “Derived AttributeDefinition”. This is a new kind to define an
attribute of an entitytype. Indicated by the interface "MxLDefinable” it is possible to define
the value of the attribute using MxL queries. An introduction to MxL and its possibilities
can be found later this section.

Thirdly the classes “Function” and “FunctionParameter” are introduced. A function is
always defined for a whole workspace and MxL can be used to formulate its expression.

The forth addition is the interface “MxLReferable”. Its definition is shown in Figure
2.5. All classes implementing the interface “MxLReferable” (for example “EntityType” or
” AttributeDefinition”) can be referred to by MxL, which on the other hand is used by the
classes implementing MxLDefinable (Derived AttributeDefinition and Function).

11

2. Foundations

«interface» refers to » «interface»

MxLDefinable * « | MxLReferable

expresson: MxIExpression

Figure 2.5.: MxLReferable and MxLDefineable Definition [18]

Introduction to MxL Expressions

As stated in 1.1.2, MxL is a domain specific language, which grants type safety and sup-
ports sub typing[19].The type hierarchy of MxL is shown in Figure 2.6. The part marked
in green is adapted on the current state of the hybrid wiki.

I
[

’ String ‘ ’ Number ‘ ‘ Boolean ‘ ’ Date ‘ ’ Map ‘
‘ Entity ‘ ‘ Sequence ‘ ‘ Function ‘ ‘ Type ‘ Space ‘
L
Definition of Business Person Gro
qualitative EA model Application up

Figure 2.6.: MxL Type Hierarchy [19]

Another feature of the language is the built in type checker. This checker can validate
any given MxL expression and calculate the outcomes inferred type based on the, to the
current state of the wiki adapted, hierarchy. This also enables simplified MxL expressions.
The expression

find ”"Business Application”
.select(ba =>
ba [”Function points”]. first())
.sum ()

implemented with the the untyped core expression language of the hybrid wiki can be
simplified to:
find ’Business Application’

.sum(’Function points”)

Example taken from Reschenhofer et. al [19]. Thanks to these functions the user is able
to access data and perform calculations on the basis of the hybrid wikis current state.

12

2.4. ACM Meta Model

2.4. ACM Meta Model

The ACM Meta Model as introduced in Section 1.1.3 is all about Tasks and their manage-
ment. The model is taken from Matheus Hauders dissertation "Empowering End-Users to
Collaboratively Structure Knowledge-Intensive Processes” [9]. Figure 2.7 shows the whole
model, which will be explained in detail afterwards.

Page TypeDefinition
name: Stirng | name: String
hybridType: HybridTypeProperty space : OneRole<Space>
Process criteria Sentry
name: String criteria: List<Process>
typeDefinition: TypeDefirem- preconditicn enables: Process
preconditions: List<Sents
Task satisfies: List=Sentry> —
name: String 2§

page: OneRole<Hybrid>

taskDefinition: OneRole<TaskDefinition|” ~ ~ ~ ~ ~ |
properties: ManyRole<PersistentHybrid| }
progress: Int |

TaskDefinition Stage

name: String tasks: List<Process=>
propertyDefinitions:

PersistentHybridProperty PersistentHybridProperty
name: String name: String
ownerEntity: Hybrid ownerEntity: Hybrid
values: HybridvaluesProperty [~~~ 777777 values: HybridValuesProperty

Figure 2.7.: ACM Meta Model [9]

The four most important classes of the model are "Process”, “TaskDefinition”, “Stage”
and “Sentry”. TypeDefinition is mapped to the class "EntityType” and "Page” is the same
as "Entity” from Section 2.1, the ACM meta model just uses and older version of the hybrid
wiki model as its basis. The name changes are further explained in [17].

Process is the super-class of “TaskDefinition” and “Stage”. The composite pattern is
used to implement a hierarchical structure within the processes. Stage is the composite
and therefore can have multiple children of the class process (component) attached to it.
Objects of the class “TaskDefinition” are the leaves in the resulting tree.

A process is always directly attached to a typedefinition and only visible within this
context. To enhance the processes even further sentries are introduced. A sentry can be
connected to a process via two different attributes, either preconditions or satisfies. The
sentries stored in preconditions are linked with the logical or, therefore one of the sentries
requirements needs to be met to enable the process. The sentries stored in satisfies on the
other hand are all sentries, which use the process as criteria to be fulfilled.

13

2. Foundations

Sentry itself has two attributes, criteria and enables. Enables is a reference to a process,
which is enabled when all criteria of the sentry are fulfilled and criteria is a list of processes,
which are linked with the logical and.

Within the attribute ”“propertyDefinitions” of the class “TaskDefinition” PersistentHy-
bridProperties are stored. Referring to the hybrid wiki model presented in Section 2.1
PersistentHybridProperties are attributedefinitions. To complete a task on instance level
all attributes of the corresponding page, which are listed in propertydefinitions need to
have a value set.

14

Part I11.

Integrated Hybrid Wiki Model

15

3. Integrated Hybrid Wiki Model

In this chapter, the integrated hybrid wiki model is presented and the behaviour of impor-
tant classes is explained in detail.

3.1. Explanation of the Model

Integrating the three models presented in chapter 2 resulted in the model shown in figure
3.1. The hybrid wiki model thereby is the baseline, as the other models are connected to
it. The model describes the current back-end of SocioCortex. Classes filled in green are of
high importance for data structure and therefore also for the prototype implementation.
Their behaviour will be explained in the following section 3.2.

17

3. Integrated Hybrid Wiki Model

eI
«aoepalU»

hd « 0151343y 2

oIS TXN “uOIsSaIdKD

alqeuya QN
«avepAUD

—4q pauyap st p——
. T

ahLeveq :adA parawesed
Buug aweu

uopuyaguipuigeleq

—4q pauyap st p——
. T

Buu :aweu

adAtuonezyiensin

(asniadkapas . :
128230 :ssafoid saumo
. o) a1 :pus
E Sups Aoy (ssniadxahias siipfs <Aq pauyaps. areq e |
Suus aweu sasn dnoig
uoissadkaIN aseis vopuyaqseL -
v sey L 7 .
0
o
T
. i Uealoog ‘dnoiparea ohews
swoigsagea | Sums aweu v sey ¥ hey [« 2weasiuipe 01 pawolje s{ uesjoog avedsyomareaiohews .
e <uonpuRI_g ss2201q . [« peai oy pamojje's. uws aweu | jo saquaw s pr
* wuﬂﬂu.mﬁﬂﬂﬂ%« P2 01 pamolie s— 1pdiduLg N
T <7
Ay
AN BIanRE | Al9eRiu
° adk1ereq :adh angqrne ——O Palqo :anjen
auohpexs Bumsaweu | 170 * Buuis :aweu
auojewixews SldeR4H NN a ey s < Aqpauyap s s O—1]
a1qeauaq I Daq0 :anjen
sugiseanie O———— vonuiagaINquRYpanIag uopuyaQENgLIY anquay g
hue palloU0dss3IY
aldeusaa XN Suipuigereq
TN . .
<wnua»
<« seu- J Ay Ay .
<« Jouaseds; %
Lo
‘ o] ;
T .
l@— |« owpayoenys—* |
o . Sums :aweu qojg ua0>
«adk o5t o— Sus :aweu
20 Bus saweu
3dA jausodwo) adA paiseg adAjAnu3 —-o0 Anu3 —-0 o —-0
[— pajionuedssany E pajlonuodssadY onerenon o
7 7 1 Palj0AUOIsSANY
AT Ay
«j0300151 .
<suEuo> 000
e T
Buus :aweu Suws :aweu! 0
N Bus :aweu
adf1oi0g a%edsyiom
proqusea L——o
paljonueIssaNY pajlonueIsSANY

10

< uyam pau

_m—:_J .

o—o|
a1ges44 XN

Sus :aweu

o——
3|qeuyagxin

’ﬁlmm; >
uoaun4woIsN)

mr pallosuossay

Uea|0og :[euondos!
adA ereq :adhy
Buns ey

13j3weIRqUORIUNY

!

paljouossany

Integrated Model

Figure 3.1.

18

3.2. Behavioural Model

3.2. Behavioural Model

In this section the behavioural model is explained class by class in detail with a special em-
phasis on the CRUD operations and their effect on other elements. The classes discussed
are "Workspace”, “EntityType”, ” AttributeDefinition”, “CustomFunction” and “TaskDef-
inition”, in this exact order. At the end of each part a table shown a summary of the
behavioural model of the explained class.

The access hierarchy is defined as follows: Administrator >Writer >Reader. Having ad-
ministrator rights also includes write and read access and being able to write also includes
read access.

Workspace

To be able to create a workspace, the attribute “mayCreateWorkspace” of the currently
logged in user must be set to true. Creating a workspace has several consequences, namely
the following: First of all the new workspace is created. Secondly a new entity of the type
"Text Page” is created and set as the home-page of the new workspace. Lastly the creator
of the workspace is also set as administrator for it.

To be able to see and read a workspace, the user needs at least explicit read access to the
workspace. Reading a workspace has no consequence for it.

To update a workspace the user needs explicit administrator rights for this exact work-
space. The consequences are depending on the element being updated. If the name of the
workspace is changed, there are no consequences for other elements. Changing the home-
page has two consequences. On the one hand is the new home-page the new landing-
page when accessing the workspace and therefore not deletable and on the other hand
losses the old home-page its status and therefore becomes deletable. Updating the access
rights for a workspace can have different outcomes. If all settings are on default, the user
gets administration/write/read access to the workspace and all its elements like entities,
functions or files. But if one of the elements does not inherit the workspace settings, then
the user will not get access to this particular element, resulting in a possible scenario,
where the user only gets access to the workspace alone but not to any of its elements, if no
element inherits the access rights. However this can be overruled by resetting the rights
for all Entities within the workspace.

To delete a workspace, the user has to have administrator rights to the workspace. A
deletion of a workspace also includes deleting all its entities, files and functions.

19

3. Integrated Hybrid Wiki Model

Operation | Precondition Consequence

Create mayCreateWorspace = true workspace created Entity home-
page created

Read reader of workspace none

Update admin of workspace name: Namechange

access rights: Change applied to
workspace and all its elements with
default settings

Delete admin of workspace workspace and all elements within
are deleted

Table 3.1.: Behaviour Workspace Summary

EntityType

To create an entitytype within a workspace, the user needs administrator rights to that
particular workspace. Creating an entitytype has the consequence, that a new entitytype
with the given name is generated.

The visibility of entitytypes is depending on the users rights. If the user is a reader of the
workspace, he or she can see the entitytypes within this workspace as well, but restricted
to a list of instances and versions of the type. To be able to see the settings of a type, the
user needs administrator rights for the workspace.

When the user is an administrator of the workspace, he can also update all entitytypes
within that workspace. Renaming the entitytype has the consequence, that the type gets
its new name and all entities of this particular type keep the entitytype with the new name.
The same behaviour is valid for changing the plural name. Updating the setting, whether
an entitytype allows free attributes or not has the following consequences: If the function
was disabled and gets enabled, the users are from now on able to create free attributes for
all entities of this type. If the function was enabled and gets disabled, the users can not
longer add new free attributes, but the old ones will not get deleted and therefore stay and
may cause unwanted inconsistencies within the different entities. A similar behaviour
occurs for changing the name generation pattern for the title of a page. If the pattern is
changed, the title of already existing entities will remain the same, but a warning will be
displayed to point out the inconsistency and after changing the pattern the user can apply
it to all pages via the settings of the type.

To delete an entitytype, the user again needs administration rights for the workspace.
Deleting an entitytype however does not delete all its entities as well. They only loose their
Type and become entities of the type “Text Page”. While an entity has the type Text Page,
none of their attributes will be displayed, even-though they still exist and will reappear
when the entity is assigned to another type. For SocioCortex a second variant, where the
entities are also deleted, when their type is deleted is also possible, as they might be more
tightly connected to their type and entities without a type loose their relevance for the
system. Furthermore all attribute definitions, derived attribute definitions, task definitions
and stages of the type are deleted as-well. Attributes referring to the deleted type loose
their constraint and only keep the limitation to link to another entity. MxL expressions
using this entitytype might become invalid.

20

3.2. Behavioural Model

Operation | Precondition Consequence
Create admin of workspace Entity Type created
Read reader of workspace (limited) | none
admin of workspace (full)
Update admin of workspace name: Entities get type with new
Name

enable free attributes: Only for
new attributes, already existing at-
tributes stay

Delete admin of workspace Entities of the Type loose their Type
and become a “Text page”. Their at-
tributes are no longer visible

all Attribute Definitions, Tasks etc.
of the type are deleted

Attribute Definitions referring to
the type loose their constraint

Table 3.2.: Behaviour Entity Type Summary

Attribute Definition

To create an attribute definition for an entity, the user needs administrator rights for the
entities workspace. Creating a new attribute definition only needs a name to be valid.
After creating the definition, the attribute is added to every entity of the definitions entity
type, but with no value set. The name of the attribute definition has to be exclusive, as an
entitytype cannot posses multiple attribute definitions of the same name.

To be able to see the attribute definition, the user needs to be an administrator of the en-
titytypes workspace. As a writer or reader of the workspace or an entity using the attribute
definition, the user can only see the attributes name and value, but not the definition.

To perform updates on an attribute definition, the user again has to have administra-
tion rights for the workspace. The different update actions explained in this section are:
Changing the name of the attribute definition, changing its multiplicity and setting a new
attribute type. When updating the name of an attribute definition, the name is changed on
an entity level for all attributes as-well, but they keep the value of the attribute. Changing
the multiplicity can have different outcomes. When changing from a strict multiplicity,
like “exactly one value” to a more general multiplicity as for instance ”at least one value”
no problems occur on an entity level, as all attributes following the old definition will still
be compliant with the new definition as-well. Problematic can be a change the other way
round, where the new multiplicity is more restrictive or has other restrictions than the
old one. The change of the definition will not affect the attributes already having values.
For example, when an attribute with multiplicity ”at least one” has two values and the
multiplicity of the definition is changed to “exactly one” then the attribute will keep both
values, but display a warning message, that it is not compliant to the definition. Updating
the type of an attribute definition also does not change already instantiated values of that
attribute, but displays a warning message.

To delete an attribute definition, the user again needs administrator rights for the workspace

21

3. Integrated Hybrid Wiki Model

of the definitions entitytype. Deleting an attribute definition removes the definition and
the user can choose to delete the values of the attributes or keep them. MxL expressions
using that attribute definition might become invalid.

Operation | Precondition Consequence

Create admin of workspace Attribute Definition created At-
tribute added to Entitites without
value

Read admin of workspace none

Update admin of workspace name: attributes also change

multiplicity: violating values stay
(with warning)

type: violating values stay (with
warning)

Delete admin of workspace Attributes become free attributes
even-though the Type might not al-
low free attributes

Table 3.3.: Behaviour Attribute Definition Summary

Custom Function

As custom functions are not connected to many other classes in the meta model (see Figure
3.1), their behavioural model is also not that complex.

To create a custom function, the user has to be an administrator of the workspace, where
he intends to create the function. A name and the method sub with executable MxL code
are required to create a custom function.

To be able to see the custom functions of a workspace, the user needs to be an adminis-
trator of the workspace. Reading a custom function has, of course, no consequence.

As an administrator of a workspace, the user is also able to update all its functions. Up-
dating the method sub has the consequence, that on the one hand the implicit return type
can change and therefore MxL expressions, where the function is used can become invalid
on the other hand the outcome can change and also invalidate expressions using the func-
tion. Therefore the user should be fully aware, where the function is used before updating
its expression. For recursive functions the explicit return type is of high importance, as the
system cannot compute an implicit one. Changing it can have the same consequences as
changing the method expression itself and because of that is also a task, which has to be
handled with care.

To delete a custom function, administration rights for the workspace are required. As
deleting has the consequence, that the function cannot be used in other expressions any
more, the user has to make sure to correct the expressions, which had used the function
afterwards.

22

3.2. Behavioural Model

Operation | Precondition Consequence

Create admin of workspace Custom Function created

Read admin of workspace none

Update admin of workspace expression: may cause new in-

ferred type + invalid code expect-
ing the old outcome

explicit type: may cause invalid
code expecting the old type

Delete admin of workspace other code using the function may
become invalid

Table 3.4.: Behaviour Custom Function Summary

Task Definitions

As for custom functions the user needs administration rights for a workspace to generate
task definitions. Adding a new task definition to the system will automatically add its task
to newly instantiated entities of the definitions type but not to already existing entities of
the given Type.

To see task definitions, the user also needs administration rights. But to see a task,
the user only needs read access to the entity using it. Reading a task definition has no
consequences.

There are various things that can be updated within a task definition, if the user is an ad-
ministrator of the workspace. The three possible changes discussed in this section are: The
task definitions name, its attributes and its preconditions. Changing the name, of course,
changes the name of the definition and of all future tasks of this definition, but not of the
already instantiated tasks, which can lead to major inconsistencies depending on the fre-
quency of name changes. The same behaviour is also true for adding or deleting attribute
definitions to the task, they will not update for already existing entities. The corner case
of deleting the last attribute definition of a task does not delete the task definition, but
results in empty tasks, when a new entity is created. The third possible change is adding
or removing preconditions to the task. This can be done in two different ways, adding an
“or” precondition or an “and” precondition. The first resulting in creating a new sentry
with the task definition as “enables” and the new precondition as “criteria” and the sec-
ond resulting in the precondition being added to the existing sentry. Both updates take
no effect on already instantiated tasks whatsoever. As this behaviour differs strongly from
update operations on all the other elements described in this section it should be revised
and maybe adjusted.

To delete an task definition, the user also needs to be an administrator of the workspace.
Deleting a task definition can have multiple consequences. Firstly, unlike the update op-
erations, all instantiated tasks of this definition are deleted. Secondly the definition is
removed from all preconditions, which can result in the deletion of a sentry, if it was the
only element in criteria of the sentry. Thirdly the task definition is removed from all stages
and lastly all sentries, which enabled this task definition are deleted as-well.

23

3. Integrated Hybrid Wiki Model

Operation | Precondition Consequence

Create admin of workspace Task Definition created Tasks not
added to existing Entities

Read admin of workspace none

Update admin of workspace attributes: no changes for existing
Tasks
precondition: adding Sentry or
modifying Sentry

Delete admin of workspace Tasks are deleted aswell, Task
Defintion removed from Sentries
and Stages

Table 3.5.: Behaviour Task Definition Summary

24

Part IV.

Prototype Implementation

25

4. Prototype Implementation

In the following chapter the prototypical implementation is presented. Therefore the first
section explains the technical foundation. The second part is about the overall architecture
of the prototype and the third part exemplifies the core features, which are part of the
answers to the second research question stated in Section 1.3.

4.1. Technical Foundation for the Prototype

SocioCortex, sc-angular and the Angular Material framework are all tightly connected to
the prototype and therefore explained in the following.

4.1.1. SocioCortex

SocioCortex is a software project of the chair “Software Engineering for Business Informa-
tion Systems (Sebis)” at the Technical University of Munich. They describe SocioCortex
as "The Social Information Modelling Platform for Collaborative, Evolutionary Data and
Process Management” 1. It is the successor of Tricia, which was also developed by the
Sebis chair. SocioCortex therefore also uses the Hybrid Wiki approach introduced in Sec-
tion 1.1.1. The whole software ecosystem around SocioCortex is visualized in Figure 4.1.
On the application side, there is the default client suite and the vertical applications. In
addition to these there are also content sources and identity providers connected to So-
cioCortex. Within the default client suite the applications modeler, content manager and
visualizer are located. Vertical applications among others Spread-sheet 2.0 and Lexalyze.
The easy accessible interface via REST API and available tutorials also encourages people
to implement their own applications on top of SocioCortex. The prototype of this thesis is
the modelling application within the default client suite. The REST API of SocioCortex is
accessed via sc-angular, which is explained in the following subsection.

1Source: http:/ /www.sociocortex.com/

27

4. Prototype Implementation

Figure 4.1.: SocioCortex Architecture [21]

4.1.2. sc-angular

Sc-Angular is tightly connected to the REST API of SocioCortex and enables web applica-
tions to access all API commands via angular-js calls. The documentation of the API can
be found on the SocioCortex-homepage: http://www.sociocortex.com/documentation/
and sc-angular itself can be downloaded via github (https://github.com/sebischair/sc-
angular/ Open Source). It is mainly developed by the sebis chair and therefore updated
on a regular basis. It consists of seven modules all addressing a different part of the APL
The first module is called scAuth and responsible for the authentication process with the
server. Via scData the data side of SocioCortex can be loaded, namely Workspaces, Entities
and Attributes. scModel provides read and write functions for the data-model side. This
includes EntityTypes, AttributeDefinitions, Derived AttributeDefinitions and Functions. A
sub-part of scModel (scModel.processes) enables access to the process part of SocioCortex,
described in Section 2.4. The forth module is called scMxL and provides various functions
for MxL. scPrincipal is responsible for user and group management, scSearch accesses the
SocioCortex search engine and scUtil provides some Utility functions. The most important
parts of sc-angular for the prototype are highlighted in Figure 4.2.

28

4.1. Technical Foundation for the Prototype

* User authentication

* Workspaces
« Entitites
® Attribtues

® EntityTypes * Functions
* AttributeDefinitions * Processes
 DerivedAttributeDefinitions

* MxL queries

* User and Group Management

* SocioCortex serach function

SC'UtlI * Utility Functions

Figure 4.2.: sc-Angular Architecture based on [21]

4.1.3. mxl-angular

The mxl-angular framework, developed by the sebis chair, provides functions to work
with MxL code and to generate class diagrams with the use of MxL. Furthermore it also
includes some utility functions. Mxl-angular is open source and can be accessed via git
hub: (https://github.com/sebischair/mxl-angular).

The two main elements used in this prototype are the mxl-editor and the mxl-model
view. The first provides an editor view for MxL-code, with auto completion hints, code
validation and code execution and is therefore a useful tool to write MxL-code. It is used
for the definition of Functions on a workspace level and Derived Attribute Definitions as
shown in Section 4.3.3. The mxl-model view is used to display the UML class-diagram of
a workspace (Section 4.3.1) and to enhance the coding of MxL for Functions and Derived
Attribute Definitions (Section 4.3.3).

4.1.4. Angular Material

“For developers using Angular]JS, Angular Material is both a Ul Component framework
and a reference implementation of Google’s Material Design Specification. This project
provides a set of reusable, well-tested, and accessible UI components based on Material
Design.” [8] The prototype uses Angular Material as basis for its design and almost all of
the 36 style components find use within the implementation. The most important of these
are: List, Card, Input, Button and Dialog. Implementation demonstrations can be found
on the angular material homepage (https://material.angularjs.org/)and within
the next pages of this chapter, where the core features of the prototype and implementation
details are explained (Section 4.3).

29

https://github.com/sebischair/mxl-angular
https://material.angularjs.org/

4. Prototype Implementation

4.2. Overall Architecture

The prototype is divided up into 29 components all listed in Figure 4.3. Each component is
easily reusable within the prototype. The components each consist of a html file, responsi-
ble for the layout and a javascript directive, managing the data, functions and API calls. As
stated above, all html files follow the Angular Material guidelines, with some adoptions
to provide all needed functionalities.

groupsQOverview
groupsSingleGroup
groupsSingleUser

components
admin mainDashboard
breadcrumb navbar
entityTypeAttributes sidebar
entityTypeDashboard sidebarWorkspace
entityTypeDerivedAttributes signin
entityTypeSettings typePicker
entityTypeStages waorkspaceDashboard
entityTypeTasks workspaceETypes
groupsMain workspaceFunctions

workspaceMain
workspaceMostlUsedETypes

waorkspaceOverview

iconPicker workspaceSettings
login warkspaceUml
main

Figure 4.3.: Components of the prototype

To navigate through the application, ui-router with different states is used. A total of
11 states are implemented in the prototype and visualized in Figure 4.4. "Home” and
”"WorkspaceMain” only provide the skeleton for their sub-states and are never addressed
without a sub-state. Therefore they are marked in grey. The layout of the states “Home”
and “"WorkspaceMain” are shown in Figure 4.5. The area ui-view marked in grey is the area
where the sub-states are displayed. The default sub-state for "lhome” is “MainDashboard”
and for "WorkspaceMain” it is “WorkspaceDashboard”.

30

4.3. Core Features

WorkspaceMain

“ -
N Workspaces . Workspace Entity Type
[Mam Dashboard} (Overview j (Admin j (Groups] [Dashboard j [Dashboard j
[Single Group j (Single User }

Figure 4.4.: State-Hierarchy of the prototype

navbar

sidebarWorkspace

sidebar

(a) Layout Home (b) Layout WorkspaceMain

Figure 4.5.: Layout Home and WorkspaceMain

4.3. Core Features

In this section, the features and functionalities of the prototype, which refer to the research
question in Section 1.3 are explained in detail. The Workspace Dashboard and Attribute
Definitions explain the data side, functions are covered by the Derived Attribute Defini-
tions and task by Tasks. The role model is not mentioned, as it is integrated into the other
parts.

31

4. Prototype Implementation

4.3.1. Workspace Dashboard

The Workspace Dashboard includes several components to analyse the selected workspace
on different levels of detail. A screen-shot of an example workspace is shown in Figure 4.6

Home Workspace
= 5 Pyt
SocioCortex Modeler - Northwind TOBIAS SCHRADE

DASHBOARD FUNCTIONS SETTINGS
an Users and Groups

+ Add Entity Type Most used Entity Types UML Diagram
\\ Administration

B Product Order

a Workspaces . o
8 Supplier Product o =

Northwind 18 Order Supplier
& Customer CuStomer ee—

Category — em—

Entity Types

i= =] &] &

Category Product Supplier Order Customer

Figure 4.6.: Screen-shot Workspace Dashboard

The Workspace Dashboard can be divided up into 4 main parts, marked by different
frames in the figure.

The white sidebar (red frame on the left) facilitates navigating through the various Enti-
tyTypes of the selected workspace. A input field at the top thereby filters the Types based
on their names, to facilitate working with bigger workspaces using more then 20 different
Entity Types.

Framed in green are the 5 most used Entity Types of the workspace. The bars are always
adjusted in a way, that the most used Entity Type has a full bar. The user can get a quick
overview of the importance of a Type by looking at this area.

The third part uses the package mxl-angular, explained in Section 4.1.3 to display a UML
class-diagram of the workspace. Within the diagram the Entity Types of the workspace
are shown as classes. The references between the classes are build out of their Attribute
Definitions. In this workspace an Order always has exactly one Customer attached to it
via the Attribute Definition Customer with multiplicity “Exactly one value”.

Lastly the orange area again shows the EntityTypes of a workspace. This time the data
is enriched with 2 values shown in the bar diagrams. On the one hand, the orange bar
visualises the consistency of all instances of the given EntityType. A full bar resembles
low and an empty bar high consistency. The meaning of consistency in this case is, that
the instances follow all the rules given by the definitions of the Entity Type. On the other
hand, the grey bar indicates the structuredness. Empty bar symbolises high and a full bar
low structuredness within all instances of the Type. Structuredness is a metric to show,
whether the instances implement a lot of free attributes or not and is an indicator, where
re-factoring might be needed.

32

4.3. Core Features

4.3.2. Attribute Definitions

The view ”Attribute Definitions” provides all functionality needed to add, delete and mod-
ify attribute definitions of an entitytype. A screen-shot is displayed in Figure 4.7.

TOBIAS SCHRADE

ATTRIBUTE DEFINITIONS DERIVED ATTRIBUTE DEFINITIONS TASK DEFINITIONS STAGE DEFINITIONS SETTINGS

an Users and Groups

Add Entity Type
\ Administration L @ Birth date Exactly one value v
12 Categon oare
§ Product

a Workspaces B Read Only

Northwind

Figure 4.7.: Screen-shot Attribute Definitions

To modify the attribute definitions of an entitytype they are all displayed within a list of
angular material cards. The content of the cards is adjusted depending on the Type of the
attribute definition.

Within the blue frame, an opened attribute definition is shown. The various input fields
are activated, so the user can change the parameters of the definition. When the definition
differs from the one stored on the server, the save and reverse buttons in the bottom right
corner are enabled and the user can either store or cancel his changes. Depending on
the attribute type, different input fields are shown. For enumerations, for example, a new
tield named enumeration values is displayed to define the different values the instantiated
attribute can have.

To change the Type of the attribute definition, clicking the blue button in the top left
corner opens the type picker, shown in Figure 4.8 as a pop-up. All available types are
displayed in 4 columns. The first column contains the entity types defined for the current
workspace and a search bar to look for types in different workspaces utilizing sc-search.
The second column, containing the generic link types, is for general references to other
objects of all kinds. The third for basic types, like “Text”, "Number” or “Date”. The last
column only contains the Type ”Any Type”, only used if no restriction is applicable to the
Attribute. Due to the fact, that the Type Picker has its own template and controller, it can
easily be adjusted in the future, if new Types are introduced to SocioCortex.

The green frame surrounds a minimized attribute definition, which is its normal repre-
sentation. In this state, the definition can not be changed. The minimized view is needed
to grant the possibility to see several definitions without scrolling the page. This is impor-
tant, because the order of the attribute definitions can be changed via drag and drop of the
cards and scrolling makes this harder to use. To enlarge the card a button appears when
hovering it.

33

4. Prototype Implementation

The last card, framed in orange, represents a new attribute definition, which can be
added to the entity type. To save a new definition on the server, the card needs to be
enlarged and a type and name have to be set, otherwise the save button remains disabled
as these two values are required by SocioCortex.

Type Picker

Custom Entity Types Generic Link Types Primitve Types Any Type

£ Category & Workspace = Text ? Any Type
Bi Product I Entity 42 Number

@ Supplier [File £ Date

15 Order & User & Boolean

& Customer & Group i= Enumeration

From other Workspaces +— Any Resource {} Json

>_ MxL Expression

Figure 4.8.: Screen-shot Type Picker

4.3.3. Derived Attribute Definitions

This section describes the page to create, edit and delete derived attribute definitions. A
screen-shot of the view is shown in Figure 4.9.

__ Home > Workspece 5 EntityType
= SocioCortex Modeler = Northwind ~ Customer TOBIAS SCHRADE

ATTRIBUTEDEFINTIONS DERIVED ATTRIBUTEDEFINITIONS ~ TASKDEFINITIONS STAGEDEFINITIONS SETTINGS
e Users and Groups —_—

+ Add Entity Type
i\ Administration MXL [
12 Category DERVED ATT
oerNmoN
B Product [Qroday - “8irth date-[].intaiv(365)
B Workspaces
8 Supplier
Order
Northwind 18 Order |
Orders [*]
& Customer Cusloniev[u] 1
Customer

Birth date : Dat[e []j‘l]
Company : Text [1..1
‘Age - Number

DERVED ATT.
DEFNITION

Figure 4.9.: Screen-shot Derived Attribute Definitions

The structure of the tab is similar to the “normal” attribute definitions. They are ar-

34

4.3. Core Features

ranged in a list of cards and can be expanded to enable editing (blue framed part). The
special part about derived attribute definitions are the mxl-editor and the mxl-model view.
As described in Section 4.1.3 both are part of the mxl-angular framework. The important
part hereby is, that the editor and the model view are linked together. That means, depend-
ing of the MxL-expression in the editor, the used entitytypes and attributes are highlighted
in the model. In this case, the expression calculates the age of a customer based on his birth
date via the expression ”(Today - ‘Birth date’).intdiv(365)”. Thus the attribute definition
birth date and the entity type customer are highlighted. The adjacent classes in the model
are still visible to offer an overview over the other attributes, which can be used within the
expression.

Another important singularity of derived attribute definitions is the fact, that they have
an inferred type and an explicit type. The first one is calculated based on the result of
the MxL-expression, but due to the fact, that this calculation is not possible for recursive
expressions, the user is also able to define an explicit type, in case he uses recursion.

The green part is again the minimized representation of an derived attribute definition,
which is the standard for all definitions when navigating to the tab for overview reasons.

The orange cards function is to create a new derived attribute definition. The expanded
card also features the mxl-editor and mxl-model view as described above.

4.3.4. Tasks and Stages

Tasks and stages are the last two pages described in this section. The two views also
incorporate sentries, but they are handled in the background. A screen-shot of the view to
edit task definitions is sown in Figure 4.10.

__ tHome >
= SocioCortex Modeler

&% Users and Groups) -

N Administration

%
i

Workspaces

%
im

Northwind

in
g
3

Figure 4.10.: Screen-shot Tasks Definitions

The blue frame surrounds a maximized task with its 3 main attributes: The tasks name,
the attribute definitions included in the task and its preconditions. The name is just the
name of the task and has no further meaning. The attribute definitions are responsible for

35

4. Prototype Implementation

the completion of a task on the instance-level. All attributes listed within the task defini-
tion need to be filled out in the entity to complete a task. Furthermore is it only possible
for a definition to appear in one task within the entity, otherwise the system does not work
properly. To avoid this, the attribute definitions are filtered for each task definition and can
only be added via auto-completion of the filtered list. The preconditions are a simplifica-
tion for the user, as they are represented by sentries in the back-end. Essentially each line
of preconditions (which can be tasks or stages) is saved as one sentry. All preconditions
of one sentry are connected by the logical and. Adding preconditions to the second line
results in another sentry being added to the task, which is connected by the logical or to
the other Sentries. As the tasks can be arranged in a hierarchy, the preconditions also use
auto-completion and task specific lists to avoid illegal inputs (for more details about this,
see below).

Framed in green is a minimized task definition and marked in orange is again the card to
add a new task definition to the entitytype. Adding a new task definition is also following
the same rules for attribute definitions and therefore has its own list of available attribute

definitions.
To structure and group task definitions the view stages is used, which is shown in Figure
4.11.

_ tome > Workspace . Eniy e ——
= SocioCortex Modeler Northwind = Order

ATTRISUTE DEFINITIONS ERIVED ATTRIBUTE DEFINITION: ASK DEFINITION STAGE DEFINITIONS
< Users and Groups —

N, Administration

B Workspaces

Northwind 18 Order

Figure 4.11.: Screen-shot Stages

The orange box is again the field to create a new stage and a minimized stage is not
visible in the screen-shot. The maximized card of a stage is framed in blue. Besides the
name a stage has processes and preconditions. Processes are either stages themselves or
tasks. In the example the stage "Complete Order” consists of the processes “Determine
Shipping Date”, "Create Order” and “Determine Discount. When all these processes are
completed, the stage itself is completed. The structure resulting of the assigned processes
to stages is determining which process can be a precondition of which task or stage. To
explain the rules behind it, we look at the hierarchy shown in Figure 4.12. Stages are not
allowed to have any process below or above them as a precondition. In this case, stage 2
can only have task 1 or task 2 as preconditions and stage 1 none. For task definitions the
rule is not as strict - only processes above them are not allowed as preconditions. Task 3
therefore can have task 1, 2 or 4 as precondition but not stage 1 or 2. It is possible to get
circles of preconditions. They are not (yet) checked by the system and the user has to take

36

4.3. Core Features

care of that.

Stage 1
|
| |
Stage 2 Task 1
|]
Task 3 Task 4

Figure 4.12.: Example Stage Hierarchy

Task 2

37

4. Prototype Implementation

38

Part V.

Evaluation

39

5. Evaluation

To find weaknesses and identify further possibilities for the prototype an evaluation was
conducted. The methodology, evaluation group, questionnaire and results are described
in the following section.

5.1. Evaluation Approach

In one evaluation session both, the implemented prototype presented in this thesis (mod-
eler) and another prototype, a generic content manager for SocioCortex, are evaluated.
One session is divided up into 6 major steps and takes about one hour time. The steps are:
The introduction, explanation of the scenario, evaluation of the modeler, questionnaire for
the modeler, evaluation of the generic client and questionnaire for the generic client.

To explain the purpose of the evaluation the participants are first introduced into the
general structure of the evaluation with the two testing phases of the two prototypes and
the two separate questionnaires. This is of particular importance to avoid a mix up in the
answers of the questionnaires. Furthermore the think aloud idea was introduced to the
participants. The method, based on the article “The think aloud method” by van Someren
et. al. [26] advises the interviewee to always express his thought-process verbally and
therefore grant a better understanding for the interviewer of what the interviewee is cur-
rently doing and what outcome he or she is expecting. This is particularly important to
identify, which behaviour of the prototype is not intuitive for the participant. Another
point of the introduction is, to make sure that the interviewee understands, that the sys-
tem is tested and not he or she and critical feedback is welcome. Lastly the interviewee is
asked, if it is ok for him to record audio and the screen of the testing laptop.

In the second part of the evaluation, the scenario is explained. The participant gets the
scenario in written from and has time to read it. Afterwards open questions concerning
the scenario are answered. The whole scenario is attached to Appendix A.

After getting familiar with the scenario, the participant gets the 5 tasks, which should
be done within the system. They are again written down and if the instructions are un-
clear, questions are answered. While the participant is fulfilling the tasks, the interviewer
does not interrupt him, to avoid distraction and falsification of the users experience of the
prototype. Due to time constraints the given tasks do not cover all functionalities of the
system, but the most important ones for later all day use. The written form of the tasks are
again in Appendix A.

To be able to collect further information a questionnaire is handed out to the participant
after he or she did all the tasks. It is further explained in Section 5.1.2.

Part five and six of the evaluation are concerning the other evaluated prototype. The
participant again works on five tasks based on the same scenario and afterwards fills out
the questionnaire.

41

5. Evaluation

To round up the evaluation there is an open exchange of thoughts about the two proto-
types in the end.

5.1.1. Evaluation Group

The evaluation group consists of 6 persons, all familiar with the hybrid wiki model. Three
people are PhD students of the sebis chair at TUM and 3 are practical partners of the chair.
This distribution was chosen, to cover both, the industrial and research sector equally as
both sectors can provide different inputs for the prototype. Industrial partners to check the
practical viability of the prototype and research assistants to also double-check the theo-
retical background and utilized methodologies. The practical partners work as enterprise
architects for three different companies in Munich. One for a big bank (; 7.000 employees),
one for an association in the healthcare sector and the last one for a IT-consulting company
with over 70.000 employees worldwide.

5.1.2. Questionnaire

The questionnaire used to collect the evaluation results consists of two parts. The first part
is the standard usability scale [3]. It incorporates 10 standardised questions concerning the
usability of web and other applications. The ten questions are:

1. I think that I would like to use this system frequently.
I found the system unnecessarily complex.

I thought the system was easy to use.

Ll

I think that I would need the support of a technical person to be able to use this
system.

I found the various functions in this system were well integrated.
I thought there was too much inconsistency in this system.
I would imagine that most people would learn to use this system very quickly.

I found the system very cumbersome to use.

o ® N o O

I felt very confident using the system.

10. Ineeded to learn a lot of things before I could get going with this system.

The questions have to be answered on a scale from 1 (Strongly Disagree) to 5 (Strongly
Agree). The statements alternate between a positive and a negative statement, which re-
sults in five positive and 5 negative statements. “This was done in order to prevent re-
sponse biases caused by respondents not having to think about each statement.” [3].

The second part of the questionnaire consists of 3 qualitative questions concerning the
prototype. Their goal is it to get explicit points were the prototype can be improved and
what functionalities are missing. The whole questionnaire is shown in Appendix B.

42

5.2. Results

5.2. Results

The results of the evaluation are divided up into the results of the standard usability scale
questions and the qualitative results from verbal and written feedback from the partici-
pants.

SuS Results

To calculate the final SuS score, the points for each question need to be normalized using
the functions X-1 for the odd questions and 5-x for the even questions. The sum needs to
be multiplied by 2.5 to get a score between zero and 100 [20].

The mean SuS score per question and the average final score are shown in Table 5.1. The
final score of 72.5 points can be considered as above average regarding Sauro (2011) and
Bangor et. al.(2009) [2, 20]. Sauro considered 500 evaluations, which resulted in an average
score of 68 and Bangor et. al. had a look at 1433 web application evaluations with a mean
score of 68.2.

Remarkably positive is, that the users did not need to learn a lot of things to get going
with the system and also felt very confident using the system. The question which got
the worst results is “I would imagine that most people would learn to use this system very
quickly”. Talking with the interviewees about this particular question revealed, that its not
only the systems design fault but also the fact, that a new user needs to learn a lot about
hybrid wikis and the underlying meta model to get going in the system.

43

5. Evaluation

Average

Question SusS (0-4) Graph
z;};;rfl(ythat I would like to use this system fre- » 83 - ® -

I found the system unnecessarily complex.

3.00 B x
2.66 B «x |
3.00 B x'3

I thought the system was easy to use.

I think that I would need the support of a tech-
nical person to be able to use this system.

I found the various functions in this system
were well integrated. 283 e
I thought there was too much inconsistency in
this system. 283 ox 0
I would imagine that most people would learn 216 B x R

to use this system very quickly.
I found the system very cumbersome to use.

3.00

I felt very confident using the system. 333

get going with this system.
Average SuS score (0-100)

e

B =1
[needed to Tearn a lot of things before T could B x5

B x0

72.50

Table 5.1.: Average Results from SuS Questions

Qualitative Results

The qualitative results can be summed up into three mayor findings: Some minor design
changes could improve the usability of the prototype, as most testers complained about
the same problems, comparing to Tricia the separation of modeling and generic client is
perceived as a good step and introducing Tasks and MxL is considered useful, especially
for practical application. All in all the results were very positive and everyone agreed, that
the implementation is going the right way.

Design-wise the following points got criticised the most. Adding a new Attribute Def-
inition, Derived Attribute Definition or Task Definition is not intuitive enough. This was
remarked by both groups of participants equally. Five out of the six participants tried to
enlarge the card for the new entry by just clicking it and not the three dots at the right
end of the card. The next problem was, that it was not clearly indicated where to click to
change the type of the new Attribute Definition and it was not displayed good enough,
which input fields need to be filled out to be able to save the new Definition.

Selecting the Type was not very intuitive for the interviewees as-well. The first hurdle
thereby was finding the correct button to open the type picker and the second one finding
the right type. This was especially true for a generic type. One participant stated, that the

44

5.3. Possible Improvements of the Prototype

left column (where the generic types are listed) looked different and therefore he did not
search the type there.

The order of the input fields got some critics, because the name is more important then
the type for the participants, but in the cards the type is on the left, followed by the name.
Another problem with the cards for two people was the colour of the text. They said, that
the text should be darker to be more easy to read.

For the Task Definition view the remarks where, that the plus to add a new Sentry is
misleading. Another finding is, that not all users are used to the material “chips” element,
used to add Attribute Definitions to a Task. Four participants needed a longer time to find
out where to add them and even needed help from the interviewer.

More general remarks where, that inputs should always be able to be submitted by
pressing “Enter”, that the material design guidelines are not always followed and there-
fore there are minor inconsistencies within the design. Also the user interface could be
optimized by adding more hints and toasts to the buttons and actions performed, as-well
as minimizing the mouse path between buttons, which are usually used after another.

5.3. Possible Improvements of the Prototype

Based on the findings above there are different possible improvements of the prototype.
Besides the already mentioned changes, three new mock-ups are therefore presented in
the following sections.

Introduction Floating Action Button

The floating action button (FAB) is a design element of material design, which is used by
many web applications like the “gmail” client and “whatsapp web”. It is a button, which
is always displayed once per view, mostly in the bottom right corner and is the central
button to create something new.

This button can be used for all views within the protype, where the user is able to add
a new element and should help to providing a consistent user experience. In order to not
confuse the users, no other button should look like this FAB and therefore some buttons
need to be redesigned. An example of the prototype with the new button is shown in
Figure 5.1.

45

5. Evaluation

TOBIAS SCHRADE

__ Home 5 Workspace Entty Type
= SocioCortex Modeler - Northwind ~ Product

ATTRIBUTE DEFINITIONS DERIVED ATTRIBUTE DEFINITIONS TASK DEFINITIONS STAGE DEFINITIONS SETTINGS
% Users and Groups
+ Add Entity Type
‘\ Administration -
£= Category
NUMBER
B Product
a Workspaces
@ supplier -)
SUPPLIER
Northwind 18 Order
& Customer 3
=
CATEGORY.

Figure 5.1.: Floating Action Button Mock-up

New Card Layout

As the cards displaying the Attribute Definitions where criticised, Figure 5.2 shows a pos-
sible new card layout featuring a new order and a new text colour.

__ Home 5 Workspace y Entity Type TOBIAS SCHRADE
= SocioCortex Modeler - Northwind = Product

ATTRIBUTEDEFINITIONS ~ DERIVED ATTRIBUTE DEFINITIONS ~ TASKDEFINITIONS ~ STAGEDEFINITIONS SETTINGS
an Users and Groups
+ Add Entity Type . .
‘\ Administration Price At most one value v
£= Category
NUMBER
B Product

a Workspaces

suPPLIER
18 Order
& Customer H— i
Category EE Tl Exactly one value v
CATEGORY

Northwind

Figure 5.2.: New Card Layout Mock-up

New Task Definition Layout

To improve the Task Definition Layout hints should be added to the important input fields.
Furthermore the Preconditions for a Task should be aligned differently. A possible new
layout is shown in Figure 5.3. To further improve the layout, the auto-complete field could
be replaced with select fields, but this is currently not supported by the angular material
version used for the prototype.

46

5.3. Possible Improvements of the Prototype

Home 5 Workspace Entity Type TOBIAS SCHRADE
= SocioCortex Modeler ~ Northwind ~ Order
ATTRIBUTE DEFINITIONS € DEFINITIONS TASK DEFINITIONS STAGE DEFINITIONS SETT
an Users and Groups
+ Add Entity .
—
=l Determine Shpping Date
Category
TASK DEF
B Product
a Workspaces Attribute Definitions (Add Attribute Defini L
Supplier
Shipping date (Date) X
Northwind 15 Order

Preconditions (Processes within a line are connected with logical "AND")

& Customer
Create Order X

Different lines are connected with logical “OR"
Determine Discount X

Different lines are connected with logical “OR"
Determine Discount X

Different lines are connected with logical "OR"

TASK DEF

Figure 5.3.: New Task Definitions Layout Mock-up

47

5. Evaluation

48

Part VI.

Potential further Enhancement of the
Model

49

6. Potential further Enhancement of the
Model

This section highlights and describes four new ways, how the use of MxL could further
improve the integrated meta model of Chapter 3 using the university environment intro-
duced in the evaluation (Part V).

6.1. MxL for (default) access rights

Default access rights to Entities, Attributes or Tasks might be defined via MxL.

6.1.1. Entity

On an Entity-level this a possible example is: The EntityType “"Masterarbeit” gets the ad-
ditional information saved as MxL statement, that the Users saved as: “Supervisor”, ”Ad-
visor” and ”Student” automatically get administration rights for the entity. This simplifies
and accelerates the process of adding new Entities of this EntityType by a lot, due to the
fact that access control rights do not have to be set in an additional work-flow. In Figure
6.1 the users "Prof. Dr. Florian Matthes”, “Thomas Reschenhofer” and “Tobias Schrade”
would get administration rights for the Entity "Master’s thesis Tobias Schrade” automati-
cally.

Entity: ,Master’s thesis Tobias Schrade”

supervisor: ,Prof. Dr. Florian Matthes”
adivsor: ,Thomas Reschenhofer”
student: , Tobias Schrade”

Figure 6.1.: MxL for default access rights on Entity-level

6.1.2. Attribute

Similarly as for the Entities this could also apply to attributes to provide certain users
automatically access to a specific attribute of an Entity. One example could be a seminar
with group projects. The students are assigned to different groups, which are stored as
Attributes in an Entity that represents the whole group project. To hand in the results of
the different groups, the members of a group get write access to a dedicated Attribute,

51

6. Potential further Enhancement of the Model

where they can upload their final results. To prevent cheating, they are not able to see the
upload Attribute of the other groups. For example in Figure 6.2 the users “Thomas” and
"Felix” only get automatically read and write access to the attribute “resultsGroup1” but
cannot see the “resultsGroup2,3 and 4”.

Group: Groupl Group: Group2
Member1: , Thomas” —<groupl: - - group2»— Member1: ,Anika”
Member2: , Felix* Entity: Seminarl Member2: ,Florian”

resultsGroupl: ,Filel”
resultsGroup2: ,File2”
resultsGroup3: ,File3“
resultsGroup5: ,File4”

Group: Group3 Group: Groupd
Member1: ,Bjorn“ —<dgroup3 group4»— Member1: ,Michael”
Member2: ,,Matthias” Member2: ,Julia“

Figure 6.2.: MxL for default access rights on Attribute-level

6.1.3. Task

On a Task-level the functionality is basically the same. Referring to the seminar example
from above (Figure 6.2), the Entity “Seminarl” can have multiple Tasks for each group.
Again only the members of a specific group should be granted access to their task so they
cannot see the progress of the other groups. In this example a task could be to upload the
final results and attach them to the wiki page. In this case every group would have its own
task.

6.2. MxL for default Values

Another possibility to enhance the meta model is by using MxL for default values of At-
tributes. Figure 6.3 displays the Entity “Master’s thesis Tobias Schrade” but this time with
the two new Attributes ”start” and “end”. As a master’s thesis usually has a duration
of half a year an MxL-rule automatically setting the end date to start + 6 months would
speed up the process of generating the Entity with all its attributes. To set the end date as
DerivedAttribute does not make sense, since it is possible to extend the time frame due to
sickness or other reasons and Derived Attributes cannot handle this by now.

Entity: ,Master’s thesis Tobias Schrade”

supervisor: ,Prof. Dr. Florian Matthes”
adivsor: ,Thomas Reschenhofer”
student: , Tobias Schrade”

start: ,15.02.2016"

end:,15.08.2016"

Figure 6.3.: MxL for default values

52

6.3. MxL for Constraints of Attribute Definitions

6.3. MxL for Constraints of Attribute Definitions

Besides defining default values for Attributes, MxL could also be used to define constraints
for Attribute Definitions. In the current model is it not possible to formulate complex
constraints for Attributes. Besides for enumerations, where the enumeration values can be
set, all other types for an Attribute do not have any further constraints. A few examples,
where MxL could help in this regard are: To define a number range for a specific attribute,
with the university background in mind this could be the range of grades a student project
can get (only 1-5). Another example is, that attributes which point to a user can only be
filled with members of a specific group. An advisor of a master’s thesis for example always
needs to be a phd student of the chair and therefore a member of the group phd students
and a supervisor has to be a professor and member of the according group.

These constraints function as a security mechanism to prevent false values. But keeping
the thoughts of evolving data within hybrid wikis in mind, they should only throw a
warning, if a value outside the defined range is entered, or at least need an option to either
allow or forbid values outside the range.

6.4. MxL for Tasks and Sentries

The last area, where MxL has a wide spectrum of possible use-cases are Tasks and Sentries.
At the current state Tasks are tightly connected to Attributes and when the users sets all
Attribute tied to a Task, it is considered as completed. A similar thing is true for the
enabling of a Task. A Task only can have other Processes and when they are completed,
the Task gets enabled.

6.4.1. MxL for Completion of a Task

To increase the possibilities for Tasks, a first step would be to enable other goals then set-
ting a predefined Attribute, because at the moment this is one of the most limiting factors
of Tasks. With the help of MxL queries various other ways of completing a Task are possi-
ble. A simple example therefore is, that the free text of an entity needs to exceed a certain
number of words to complete a task. The task “write abstract” for example could be com-
pleted, when the text is long enough. Another alternative for the completion could be
when different attributes from varying entities exceed a certain value. This is more inter-
esting for the industrial sector, where the sales person might get a bonus when he makes
high profit for the company and therefore has customers with big orders.

6.4.2. MxL for Enabling of a Task

Besides Task completion, the enabling of a Task is also important, as stated above the
options here are limited at the moment. One example to extend them could be, that a
value for an DerivedAttribute needs to be bigger then a defined threshold. For example
the Tasks ”issuing a masters’s degree” should start when the student has collected 120
credits or more. Tasks could also be linked to dates, for example the task “Buy Christmas
present” should always start at the 1st December of a year.

53

6. Potential further Enhancement of the Model

6.5. User roles for Tasks

Besides the MxL functionalities mentioned above, User roles could be a nice addition to
tasks as-well. The basic concept here is, that certain Tasks are only visible to a set amount
users and need to be done by them. In practice this could have many different use-cases.
One example would be within a review or approval process. The review should only be
done by a certain group of users and therefore only be visible for them.

Another possible use-case for access control for Tasks is the simplification of Entities. By
presenting all possible Tasks to all users, the amount of Tasks could get high and therefore
the users might loose the overview over all tasks. This can be avoided by only showing
relevant Tasks for a user. An practical example therefore is the purchase process in a big
company. From creating an order till buying the product usually many people are involved
and look at the order. The many different Tasks then could be confusing. Especially when
the user should not complete one of the Tasks.

6.6. Extended Meta Model

Figure 6.4 shows how the additions within the integrated model would look like. It is
important to note, that only the small extensions in the model already enable the func-
tionalities mentioned above. The code of the interface AccessControlled has the biggest
changes, due to the addition of the interface MxLDefinable.

54

6.6. Extended Meta Model

AAqeiRpRUIIN
«aoRpIUP

t qorsiaey—-

UoIsSaUdGTXN “UoissaIdKE

alqeuyaaIXN
«avepAUD

Buwg idoy

aspadxy

akLeveq :adA Larawesed
Buug :aweu

uoiuyaguipuigeleq

Buuig aweu

adAuopezyensin

Jau. A
§ o) a1 :pud
E Buss ko (esniacxahas s <« Aqpauyaps: aveq s [
Suuis :aweu aasn dnosp
v sey AseL i
10
o
T
) . . +T ueajoog :dnoJgareainhew
swogmogeun | L Buuys :aweu v sey ¥ ke |-« @1easiuiwpe o1 pamojie s ueajoog :avedspomareaniew .
3
s < vonpuoIi—ag) ssaroid peas 01 pamol s aweu L jo saquaw st b
. Pallonu0)ssanY upa 01 pamoly P
Mu . N P B N B N
X Asey
an aiqeiRRY TN Lu
o adAeyeq :adA jan: —-o0 1a[q0 :anjen (qeuBaA TN
auphpexa Sums oweu | 170 . Suuns ‘aweu
P [— < Aqpauyapst o
A sey 2|qeauyaqX| Palqo :anjea
19 42a XN
sugiseane O—— uonuypgaIngunvpaniaa uonuYagANGLIY anquay O q PauYP st ——
hue PoI0AUOISSAIY B T
algeuyaa I o) Supugereq
BTN . alqeuyaa N N
«wnua»
< seu- J Ay Ay .
< Jowased s %
L0
‘ o] :
. T .
— < oLpaydenyst
170 . e | qojg W0
- <«3dhijost o— Bups :aweu Buus aweu
adA jausodwo) adA paiseg adArhnu3y ——0 Anu3 —oO0 T ——- 0 ——Aq pauyap st v"‘
aldesaRU KN Pajlauogssany = PalloueassaY uonezyensi ———0
7 7 T s pajlonuodssaNY
Aw A sey
«J010051 .
<suEoy a0 b
— e
auweu s -
* Buus raweu
adA1oiog
pieoqusea L— o
pajjonuOIssINY pajlonuodssany

o
< pausap m_J B
o—
Suuns raweu
alqes2324 N >—seun
Oo— uopUNjwoIsN)

219euRa XN

!

Pa]j011U0Ds52Y

Ueajoog Hleuondost
adA Lereq adky
Buis ey

13j9weIRqUORIUNY

!

pajjonuodssany.

Extended Integrated Meta Model

Figure 6.4

55

6. Potential further Enhancement of the Model

56

Part VII.

Conclusion

57

7. Conclusion and Critical Reflection

In this section, the whole thesis is summarized and the main findings are pointed out.
Furthermore it is critically reflected to point out aspects, which could have been handled
differently.

7.1. Summary

This thesis integrates four different models, which arouse around the hybrid wiki ap-
proach. In the first section, the work is motivated and the different models are introduced.
Beyond that, the research questions are stated and the outline of the thesis is introduced.
Chapter 2 further explained the underlying models. The third chapter presents the inte-
grated model. In addition to the static model, the behavioural model is presented as-well.
Afterwards the prototypical implementation of a modeller client, with its technical founda-
tions, overall architecture and core features is explained. The evaluation of the prototype
is then shown in Chapter 5. Potential further enhancements of the Model are displayed
in Chapter 6. They further integrate the model presented in Section 3.1 and suggest addi-
tional links between the models. Chapters 7 and 8 conclude the thesis by summarizing it
and also show an outlook and possible future work.

7.2. Conclusion

The main artefacts of this thesis are concluded in this section.

Integrated Model

The integrated model represents the basis for this work. It combines four different ap-
proaches to define a big meta model for hybrid wikis. This model now features all func-
tionalities provided by the sub models together and can be used for a hybrid wiki platform
with integrated data, role, function and task modelling.

Behavioural Model

The behavioural model takes a deeper look into consequences and preconditions for CRUD
operations within the model. The focus thereby is on the classes, which are important for
the implemented prototype. Knowing about possible consequences when working in a
productive system is important for every user and this model provides exactly that.

59

7. Conclusion and Critical Reflection

Possible Model Extensions

To show up further possible model extensions, a second integrated model with additional
details was created. This model further combines the underlying concepts by displaying
additional links between them. This model is not yet implemented, but shows potential
options for future work.

Prototypical Implementation of Modeller

A prototype to work with the integrated model was also implemented, explained and
evaluated in this thesis. It provides an integrated user interface for the management of
data, role, function and task models. The evaluation showed, that the implementation is
already in a usable status with a SuS score of 72.5, but also revealed some weaknesses,
which should be enhanced in the future to provide an better and more intuitive user-
experience.

60

7.3. Critical Reflection

7.3. Critical Reflection

Even though the evaluation results were positive, there are some aspects, which could
have been done differently and may have resulted in a superior outcome.

At first there are the time constraints under which this thesis was done. The short time
frame did not allow for more then one evaluation. This means, that the circle proposed
by Hevner et al. [11] was only done once. This led to a prototype, where the first set of
weaknesses is known, but they are not changed in the implementation.

Another problem is, that the evaluation took place late in the process of implementa-
tion. Rapid prototyping as suggested by Dey et al. [6] combined with an early evaluation
could have led to an implementation, which would present the, for the end user impor-
tant, functionalities in a different and maybe more intuitive way. Another approach could
have been to not only do rapid prototyping but also evaluate the mock-ups or click-able
mock-ups with the practical partners. This would have shown the weaknesses of the user
interface even earlier in the design process and would have made changes to the layout
easier. However these steps were not taken due to the time constraints of this thesis.

Another question arose during the evaluation of the prototype. Was material design as
basis the right decision or are there better alternatives? Two findings led to this question,
the first one being, that material design was not always suited to provide the needed func-
tionalities and therefore there are different points were the prototype now differs from the
material design guidelines. This led to a somewhat inconsistent user experience accord-
ing to the interviewees. Another negative point about material design are the "Chips”, a
design element to represent lists, which was used in the implementation. Two out of the
three interview partners from the practical side did not understand their usage from the
beginning and needed explanation. In this thesis the design was handled as pre set due to
the mock ups, but maybe alternatives like Twitter Bootstrap [4] would have been superior.

The last point, which could have been improved is the questionnaire for the evaluation.
We used the initial version of the ten SuS questions, even though there is a improved
version published by Bangor et al. [2]. We encountered exactly the problems described in
his paper, for instance the word cumbersome had to be explained to several interviewees.
Another problem were the english questions in general. Two interviewees did not answer
the questions correctly in the first place. This only attracted attention, because the answers
given in the questionnaire were not matching the impressions they expressed verbally.

61

7. Conclusion and Critical Reflection

62

Part VIII.

Outlook and Future Work

63

8. Outlook and Future Work

This thesis can be basis for various future works. Implementing the possible improve-
ments presented in Section 5.3 being the first open point. The implementation can be done
based on the presented mock-ups and afterwards should be re-evaluated to complete an-
other cycle based on the design science approach [11].

Another important step for the future is the implementation of a graphical solution for
modelling task definitions and stages, as current view is not suitable to manage big hier-
archies of tasks and stages. The focus there should not only be set on the hierarchies but
also on the precondition dependencies between processes.

Furthermore the potential further enhancements of the model presented in Chapter 6
can be implemented into the current version of SocioCortex. Before doing so, an evalu-
ation with participants from the industry is recommended to verify the usefulness of the
functions with the needs in the industry.

To round up the prototypical implementation of this thesis, an administration area and
further user and group functionalities should be added to it. At the current state there are
no administration functions implemented and only basic user and group operations.

The last point worth mentioning for the future is the link between the prototype of this
thesis and the generic SocioCortex client implemented by BjA{rn Michelsen. There are
several connection points between the two clients and a well rounded link between both
applications would improve the user experience.

65

8. Outlook and Future Work

66

Appendix

67

69

A. Evaluation Scenario

A. Evaluation Scenario

Scenario Introduction

In the scenario for this evaluation you are a PhD. Student at the SEBIS chair. You have access to
a new knowledge management system at the chair, SocioCortex.

You are in charge of modeling data for the system as well as using it to support you in your
activities such as overseeing students doing their thesis at the chair.

The following task will cover activites regarding the modeling of data as well as entering data
for a specific use case.

70

Scenario 1 - Modeler

Task 1: Extension of the Entity Type Master’s Thesis (Part 1)

As a PhD. Student at the SEBIS chair you noticed, that the Entity Type “Master’s Thesis” in the
workspace “Evaluation” is not fully modelled and there are Attribute Definitions missing. You
want to add the Attribute Definition “End”, which is a date and should be set exactly once and

the Derived Attribute Definition “Duration”, which should calculate the duration of the thesis
automatically.

Task 2: Creation of the Entity Type Person

To complete the Entity Type Master’s Thesis you need to add the Entity Type “Person” to the
workspace. A person needs to have a Attribute Definition “Name” and an “E-Mail”

Task 3: Extension of the Entity Type Master’s Thesis (Part 2)

Add the Attribute Definition “Advisor” to the Entity Type Master’s Thesis. “Advisor” should be of
the Type “Person”. Also make sure that every Thesis has at least one Advisor.

Task 4: Extension of the Task “Define Thesis”

To guarantee a controlled workflow, you now need to align the Task “Define Thesis” of the
Entity Type “Master’s Thesis” to also include the Attribute “End”.

Task 5: Creation of the Task “Conduct Evaluation”

To finish up your work on the model side, you now want to create the new Task “Conduct
Evaluation”. The Attribute of the Task should be Evaluation and its precondition is, that the
abstract is written.

71

A. Evaluation Scenario

72

73

B. Evaluation Questionnaire

B. Evaluation Questionnaire

Questionnaire

1. I think that | would like to use this system
frequently

2. | found the system unnecessarily complex

3. I thought the system was easy to use

4.1think that | would need the support of a
technical person to be able to use this system

5. 1 found the various functions in this system
were well integrated

6. | thought there was too much
inconsistency in this system

7.1 would imagine that most people would
learn to use this system very quickly

8. | found the system very cumbersome to
use

9. | felt very confident using the system

Strongly
disagree

Strongly
agree

74

10. I needed to learn a lot of things before |
could get going with this system |

Overall, how does this system compare to Tricia?

Overall, what would you like to change in the system?

Is there any other feedback?

75

Bibliography

[1] Frederik Ahlemann, Eric Stettiner, Marcus Messerschmidt, and Christine Legner.
Strategic enterprise architecture management: challenges, best practices, and future devel-
opments. Springer Science & Business Media, 2012.

[2] Aaron Bangor, Philip Kortum, and James Miller. Determining what individual sus
scores mean: Adding an adjective rating scale. Journal of usability studies, 4(3):114—
123, 2009.

[3] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in industry,
189(194):4-7, 1996.

[4] David Cochran. Twitter Bootstrap Web Development How-To. Packt Publishing Ltd,
2012.

[5] Thomas H Davenport. Thinking for a living: how to get better performances and results
from knowledge workers. Harvard Business Press, 2013.

[6] Anind K Dey, Gregory D Abowd, and Daniel Salber. A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applications. Human-
computer interaction, 16(2):97-166, 2001.

[7] Angela Edmunds and Anne Morris. The problem of information overload in business
organisations: a review of the literature. International journal of information manage-
ment, 20(1):17-28, 2000.

[8] Google. Angular material. https://material.angularjs.org/, 2016. Ac-
cessed: 18.07.2016.

[9] Matheus Hauder. Empowering End-Users to Collaboratively Structure Knowledge-
Intensive Processes. Dissertation, Technische Universitaet Muenchen, Muenchen, 2016.

[10] Matheus Hauder, Rick Kazman, and Florian Matthes. Empowering end-users to col-
laboratively structure processes for knowledge work. 18th International Conference on
Business Information Systems (BIS), Poznan, Poland, 2015.

[11] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science in
informationsystems research. MIS Quarterly Vol. 28, pages 75-105, 2004.

[12] Florian Matthes and Christian Neubert. Enabling knowledge workers to collabora-
tively add structure to enterprise wikis. In 12th European Conference on Knowledge
Management-ECKM, volume 2011, 2011.

77

https://material.angularjs.org/

Bibliography

[13] Florian Matthes and Christian Neubert. Wiki4deam: Using hybrid wikis for enterprise
architecture management. In Proceedings of the 7th International Symposium on Wikis
and Open Collaboration, pages 226-226. ACM, 2011.

[14] Florian Matthes, Christian Neubert, and Alexander Steinhoff. Hybrid wikis: Empow-
ering users to collaboratively structure information. ICSOFT (1), 11:250-259, 2011.

[15] Ivan Monahov, Thomas Reschenhofer, and Florian Matthes. Design and prototypical
implementation of a language empowering business users to define key performance
indicators for enterprise architecture management. In 2013 17th IEEE International En-
terprise Distributed Object Computing Conference Workshops, pages 337-346. IEEE, 2013.

[16] Thomas Reschenhofer. Design and prototypical implementation of a model-based structure
for the definition and calculation of Enterprise Architecture Key Performance Indicators. PhD
thesis, Master’s Thesis. Technische Universitiat Miinchen, 2013.

[17] Thomas Reschenhofer, Manoj Bhat, Adrian Hernandez-Mendez, and Florian Matthes.
Lessons learned in aligning data and model evolution incollaborative information
systems. Proceedings of the International Conference on Software Engineering (ICSE),
Austin, Texas USA, 2016.

[18] Thomas Reschenhofer and Florian Matthes. Empowering end-users to collaboratively
manage and analyze evolving data models. Proceedings of the American Conference on
Information Systems (AMCIS), San Diego, USA, 2016.

[19] Thomas Reschenhofer, Ivan Monahov, and Florian Matthes. Type-safety in ea model
analysis. In EDOC Workshops, pages 87-94, 2014.

[20] Jeff Sauro. Measuring usability with the system usability scale (sus). 2011.

[21] sebis. Sociocortex: A social information hub. http://sebischair.
github.io/sociocortex_web/files/160209%20Michel%20SocioCortex%
20Eco-System.pdf, 2016. Accessed: 15.07.2016.

[22] Diane M Strong and Steven M Miller. Exceptions and exception handling in com-
puterized information processes. ACM Transactions on Information Systems (TOIS),
13(2):206-233, 1995.

[23] Keith D Swenson, Nathaniel Palmer, et al. Mastering the unpredictable: how adaptive case
management will revolutionize the way that knowledge workers get things done, volume 1.
Meghan-Kiffer Press Tampa, 2010.

[24] WMP Van der Aalst, Moniek Stoffele, and JWF Wamelink. Case handling in construc-
tion. Automation in Construction, 12(3):303-320, 2003.

[25] Marcel van Oosterhout, Eric Waarts, and Jos van Hillegersberg. Change factors
requiring agility and implications for it. European Journal of Information Systems,
15(2):132-145, 2006.

[26] Maarten W. van Someren, Yvonne F. Barnard, and Jacobijn A.C. Sandberg. The think
aloud method. Academic Press, 1994.

78

http://sebischair.github.io/sociocortex_web/files/160209%20Michel%20SocioCortex%20Eco-System.pdf
http://sebischair.github.io/sociocortex_web/files/160209%20Michel%20SocioCortex%20Eco-System.pdf
http://sebischair.github.io/sociocortex_web/files/160209%20Michel%20SocioCortex%20Eco-System.pdf

	Abstract
	Introduction
	Introduction
	Important Concepts
	Hybrid Wiki
	MxL
	Adaptive Case Management and Tasks

	Problem Statement
	Research Questions
	Research Methodology and Outline

	Foundations
	Foundations
	Hybrid Wiki Meta Model
	Access Control Meta Model
	MxL Meta Model
	ACM Meta Model

	Integrated Hybrid Wiki Model
	Integrated Hybrid Wiki Model
	Explanation of the Model
	Behavioural Model

	Prototype Implementation
	Prototype Implementation
	Technical Foundation for the Prototype
	SocioCortex
	sc-angular
	mxl-angular
	Angular Material

	Overall Architecture
	Core Features
	Workspace Dashboard
	Attribute Definitions
	Derived Attribute Definitions
	Tasks and Stages

	Evaluation
	Evaluation
	Evaluation Approach
	Evaluation Group
	Questionnaire

	Results
	Possible Improvements of the Prototype

	Potential further Enhancement of the Model
	Potential further Enhancement of the Model
	MxL for (default) access rights
	Entity
	Attribute
	Task

	MxL for default Values
	MxL for Constraints of Attribute Definitions
	MxL for Tasks and Sentries
	MxL for Completion of a Task
	MxL for Enabling of a Task

	User roles for Tasks
	Extended Meta Model

	Conclusion
	Conclusion and Critical Reflection
	Summary
	Conclusion
	Critical Reflection

	Outlook + Future Work
	Outlook and Future Work

	Appendix
	Evaluation Scenario
	Evaluation Questionnaire
	Bibliography

